Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization.
نویسندگان
چکیده
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Although the mechanisms of calcium influx into spines have been explored, it is unknown what determines the calcium decay kinetics in spines. With two-photon microscopy we investigate action potential-induced calcium dynamics in spines from rat CA1 pyramidal neurons in slices. The [Ca(2+)](i) in most spines shows two decay kinetics: an initial fast component, during which [Ca(2+)](i) in spines decays to dendritic levels, followed by a slower decay phase in which the spine follows dendritic kinetics. The correlation between [Ca(2+)](i) in spine and dendrite at the breakpoint of the decay kinetics demonstrates diffusional equilibration between spine and dendrite during the slower component. To explain the faster initial decay, we rule out saturation or kinetic effects of endogenous or exogenous buffers and focus instead on (1) active calcium extrusion and (2) buffered diffusion of calcium from spine to dendrite. The presence of an undershoot in most spines indicates that extrusion mechanisms can be intrinsic to the spine. Supporting the two mechanisms, pharmacological blockade of smooth endoplasmic reticulum calcium (SERCA) pumps and the length of the spine neck affect spine decay kinetics. Using a mathematical model, we find that the contribution of calcium pumps and diffusion varies from spine to spine. We conclude that dendritic spines have calcium pumps and that their density and kinetics, together with the morphology of the spine neck, determine the time during which the spine compartmentalizes calcium.
منابع مشابه
Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization.
Dendritic spines have been proposed to function as electrical compartments for the active processing of local synaptic signals. However, estimates of the resistance between the spine head and the parent dendrite suggest that compartmentalization is not tight enough to electrically decouple the synapse. Here we show in acute hippocampal slices that spine compartmentalization is initially very we...
متن کاملGeometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments.
The role of dendritic spine morphology in the regulation of the spatiotemporal distribution of free intracellular calcium concentration ([Ca2+]i) was examined in a unique axial-symmetrical model that focuses on spine-dendrite interactions, and the simulations of the model were compared with the behavior of real dendritic spines in cultured hippocampal neurons. A set of nonlinear differential eq...
متن کاملCalcium Dynamics of Spines Depend on Their Dendritic Location
Dendritic spines are morphologically and functionally heterogeneous. To understand this diversity, we use two-photon imaging of layer 5 neocortical pyramidal cells and measure action potential-evoked [Ca(2+)]i transients in spines. Spine calcium kinetics are controlled by (i) the diameter of the parent dendrite, (ii) the length of the spine neck, and (iii) the strength of spine calcium pumps. T...
متن کاملDynamic regulation of spine-dendrite coupling in cultured hippocampal neurons.
We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the pare...
متن کاملRegulation of spine calcium dynamics by rapid spine motility.
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Spines also undergo rapid morphological changes, although the function of this motility is still unclear. We have investigated the effect of spine movement on spine calcium dynamics with two-photon photobleaching of enhanced green fluorescent protein and calcium imaging of action potential-elicited transien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2000